NUMERICAL AND ASYMPTOTIC SOLUTION
OF THE PROBLEM CONCERNING THE COMPLETE
STABILIZATION OF A BCUNDARY LAYER

S. A. Gaponov and A. A. Maslov UDC 532.501.34:532.517.2

The numerical method given in [1] is used here for calculating the temperatures of com-
plete stabilization for a supersonic boundary layer at a flat plate with the boundary condi-
tion 9(0) = 0, where ¢ denotes the amplitude of temperature perturbations. According to the
results, the conclusion in [2] that there exist two regions of complete stabilization is wrong.
The asymptotic method used in [2] is analyzed here. It is shown that two regions of com-
plete stabilization appear to exist, because the equations used in [2] had been set up for the
viscous case and, therefore, are not applicable at low surface temperatures. The results
of this analysis are confirmed by direct numerical integration.

1. A numerical method has been proposed in {1] for solving problems concerning the complete stabi-
lization of a supersonic boundary layer subject to small two-dimensional perturbations.

The calculations were performed only for the boundary condition
80 =0

with regard to temperature, where g denotes the amplitude of temperature perturbations and the prime
indicates a derivative with respect to the coordinate normal to the surface.

Of practical interest is the problem concerning the complete stabilization of a supersonic boundary
layer also under the condition that

0(0) =0

Such a boundary condition was stipulated in [2] for calculating the temperatures of complete stabiliza-
tion. The results in [2] were obtained by the asymptotic method, and they may be unreliable at least within
the M ~ 2 range of Mach numbers (see [1]). It is necessary to refine the results of [2], therefore, this
will be done here by the calculation method given in [1]. The viscosity coefficient is assumed proportional
to the temperature (u = T), the Prandtl number ¢ = 0.75, and the adiabatic constant v = 1.4. The results of
calculations for various values of the Mach number M are shown in Fig. 1: surface temperatures Ty, at
which complete stabilization occurs along the first neutral curve (1), and along the second neutral curve (2)
{the existence of two neutral curves corresponding to intensive cooling of the surface has been demon~
strated in [1]). For comparison, the results obtained in [2] by the asymptotic method are shown here with
a dashed line. The comparison indicates a wide discrepancy between the results based on the numerical
method and those based on the asymptotic method.

The numerical method has yielded one region of complete stabilization, which is bounded by curve 1
for M < 3.2 and by curve 2 for M > 3.2. The asymptotic method [2] has yielded two such regions. The first
one is bounded by a curve (dashed line) consisting of two branches which have been labeled I and II in Fig.
1. Branch I coincides with curve 1 for M < 1.4. The second region is bounded by curve III. In order to
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TABLE 1

Branch I Branch II Branch III

A
Tow e €Ty /Ty Ty e Ty /Ty | Ty € eT"yp/Tyy

0.586 0.017 0.009 0.22  10.033] 0.20 [0.166[0.032{ 0.37
0.798 0.050 0.011 0.394 |0.094] 0.16 }0.304]/0.091] 0.29
0.929 0.097 0.014 0.554 10.18 0.14 10.427{0.17 0.26
1.031 0.170 0.024 0,742 10.25 0.10 10.552]0.24 0.22
1.055 0.220 0.030 0.872 0.28 0.08 |0.62 [0.29 0.21
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I / understand the causes of such a discrepancy,we will thoroughly
¢ ; analyze the feasibility of solving the problem of complete stabi-
5 ,7 J — lization by the asymptotic method.

/-/ / /// z \\\ 2. The following system of equations has been derived in

[3] for the perturbation amplitudes:
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P=yT+0/T (2.5)

Here, U and T are the time-average velocity and temperature, respectively, £, ag, r, and P are per-
turbations of the longitudinal and the transverse velocity, of the temperature, of the density, and of the pres-
sure; vy is the adiabatic constant, M is the Mach number, u is the velocity coefficient, R is the Reynolds
number, « is the wave number of a perturbation, and ¢ = c,. +ic;j is the phase velocity of a perturbation. In
deriving system (2.1)-(2.5) it has been assumed that a perturbation is an-exponential function of the longi-
tudinal coordinate x and of time t: exp ia(x—ct).

Let the solution of this system satisfy the following three boundary conditions at the surface:
./u' =0, = 6“‘ =0 (2 -6)

If the product R is sufficiently large, then, the fundamental system of solutions can be made up of
the solution to the inviscid equations {&, F, ®} and two linearly independent viscous solutions {gs, f3, 63}
and { @5, f5» 65} [4]. Condition (2.6) will then yield the following relation at the surface [4]:

/ v : 1 -1
"(7_1)‘[!—2—_7‘;W{'J(%‘é5 %—)—-ef:—w-olz—‘] 2.7)
The left-hand side of Eq. (2.7) is usually written as [5]
O i uii—t (2.8)

Fu'f le vt e

During complete stabilization, ¢ = 0 and ¢ =1-M™, and in order to determine the critical surface
temperature in (2.8}, one needs only the value of v(Ty) [5] which satisfies the equality

Uy =3 [T g (0 :
L e e 210 | | 2-9)

w

within sufficient accuracy.
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ey e The right-hand side of Eq. (2.7) depends only on the viscous
solutions. If R > 1, and the following estimates are correct near

ﬂ_——“—_] the surface
Ty=0.41
0 l \ ,
Loz LA I, UU ~1, Sl oo, j~1 (2.10)
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AR then, for the principal terms of the viscous asymptotic solutions,
ﬁ I’ { we can write the following system of equations [3]:
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Fig. 2 With the viscous solutions outside the boundary layer in the
form {¢;, f3, 0} and {¢;, O, 65} [4], system (2.11)~(2.13) yields
Oy =/f; =0 (2.14)

and expression (2.7) becomes
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sw ¢ (v — 1) M3c?

In the given case, i.e., when oR > 1 and condition (2.10) is satisfied, the solutions to system (2.11)-
(2.13) can be found analytically. Inserting these solutions into (2.15) and then, (2.15) into (2.8), we can ob-
tain the relation which has been used in [2] for calculating the eigenvalues.

In the M ~ 2 range aR < 10, and the results obtained by the asymptotic method become uncertain, be-
cause the condition «R > 1 has been violated. This could explain the discrepancy between the results ob-
tained by applying the numerical and the asymptotic method, respectively, to the problem of complete stabi-
lization in this range of Mach numbers. )

At Mach numbers close to unity the inequality ¢R > 1 is satisfied, but the surface temperature be~
comes low and the condition T ~ 1 in (2.10) is not satisfied, which can lead to erroneous results in the
asymptotic method of solution. For branch I in Fig. 1, however, the agreement between numerical and
asymptotic results is very close. No solution corresponding to branches II and IIT has been found by the
numerical method.

In order to understand the causes of this discrepancy, let us consider, for example, the derivation of
Eqg. (2.12). It has been derived from Eq. (2.3) under the assumption that ¢ TYT is much smaller than unity.
We will now refain the estimate ¢ for ¢, and will assume that T ~ Ty, whereupon, we will estimate eTy,"/
Ty on the basis of the results in [2]. The quantity Ty, '/TW will be determined according to (2.9) in [2]:

T,e  0h(y—1)M%—09(T,— 1o

TU ' T
W w

w

Since it has been assumed that ¢ = T, then, for a boundary layer at a flat plate Uy' = 0.332/Ty. The
results of the estimates are given in Table 1. One can see here that the term ¢ T!/T may be omitted for
branch I. For branches II and III it is doubtful whether this term may be omitted from Eqg. (2.3).* For
branch I, furthermore, both ¢ and ¢T'/T decrease, i.e., the accuracy of the approximate calculation in-
creases as M decreases. For branches II and IlI, ¢T'/T increases as ¢ decreases, and this yields unre-
liable results in the asymptotic method of solution.

* Analogous omissions have been made in deriving Egs. (2.11) and (2.13), but they are not so obvious.
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Ini® mag{{mid] (2.11)~(2.13) incorrectly describes the behavior of viscous solutions.

Temperature perturbations affect one another, as can be seen
from (2.1)-(2.5), and thus, condition (2.14), i.e., Eq. (2.15) used in
[2], should not be satisfied.

\’.( Since ¢T'/T is not small for branches II and III, system
/
]
/

Thus, it is erroneous in [2], first of all, that the viscous so-

PASEYE lutions were derived using system (2.11)-(2.13), which incorrectly
/ ; describes the behavior of such solutions, when ¢T'/T is not small
2 jb::_ IR, N {branches II and TII). Secondly, the error associated with the incor-

23 L — =] rect use of system (2.11)-(2.13) could increase considerably at low
2s2% 1 values of Ty, because of the approximate integration of the equa-
tions in this system. In order to verify these statements, we have
performed additional calculations.

3. It follows from (2.8) that

U’ ® U+t o 1~
u+iv—14=—"'—'”{1—~ 2 —’"—llsA(z) (3.1)

ic F, ic F_
where &,/F,, is determined according to 2.7). The right-hand side of equality (3.1) depends only on the
viscous solutions, which can be found by direct numerical integration.

In the first series of calculations (with M =1.2), we integrated numerically Eqgs. (2.11)=(2.13). The
imaginary part of the found solutions [Im (A)] was plotted as a function of z:

7 = (cR)% [—3—3‘3 VﬁT———c dyT“
0

with y, denoting the distance from point U = ¢ along the normal to the surface. The magnitude of max {Im
(A)] depends on the surface temperature. The intersections of curves v(Ty,) and [Im (A)] yield the tempera-
tures of complete stabilization {Fig. 2). Such a procedure for determining the temperatures of complete

stabilization was also adopted in [2], but with the difference that the viscous solutions were sought analyt-
ically. The dashed line in Fig. 2 represents the results according to the asymptotic formulas [2].

It is evident that the qualitative pattern here is the same as in [2]. The max [Im (A)] line intersects
the v(TW) line, which indicates that there exist two regions of complete stabilization. The quantitative dis-
crepancy becomes greater as Ty, decreases. This discrepancy indicates that, as Ty, decreases, the exact
solutions to system (2.11)-(2.13) are less closely approximated by its analytical solutions.

In the second series of calculations, in order to obtain the viscous solutions, we integrated all equa~-
tions of system (2.1)-(2.5). The results are given in Fig. 3. It canbe seen here, that the max [Im (A)] line

intersects the v(Ty,) line only once.

On the basis of these calculations, we can conclude that at low values of Ty, one must not use system
(2.11)-(2.13) for obtaining the viscous solutions, and that the assertion in [2] concerning the existence of two
regions of complete stabilization is erroneous.

The authors thank V. Ya. Levchenko for his continued interest in this study, and A. 8. Dryzhova for
her valuable comments.
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