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The numerical method given in [i] is used here for calculating the temperatures of com- 
plete stabilization for a supersonic boundary layer at a flat plate with the boundary condi- 
tion 0(0) = 0, where 0 denotes the amplitude of temperature perturbations. According to the 
results, the conclusion in [2] that there exist two regions of complete stabilization is wrong. 
The asymptotic method used in [2] is analyzed here. It is shown that two regions of com- 
plete stabilization appear to exist, because the equations used in [2] had been set up for the 
viscous case and, therefore, are not applicable at low surface temperatures. The results 
of this analysis are confirmed by direct numerical integration. 

1. A numerical method has been propose d in [1] for solving problems concerning the complete stabi- 
lization of a supersonic boundary layer subject to small two-dimensional perturbations. 

The calculations were performed only for the boundary condition 

O' (0) = 0 

with r e g a r d  to t e m p e r a t u r e ,  where 0 denotes  the ampli tude of t e m p e r a t u r e  pe r tu rba t ions  and the p r ime  
ind ica tes  a de r iva t ive  with r e s p e c t  to the coordina te  normal  to the su r f ace .  

Of p r a c t i c a l  i n t e r e s t  is the p rob lem concerning  the comple te  s t ab i l i za t ion  of a supe r son ic  boundary 
l a y e r  a l so  under the condit ion that  

0 (0) = 0 

Such a b o u n d a r y  cond i t i on  was  s t i p u l a t e d  in  [2] for  c a l c u l a t i n g  the t e m p e r a t u r e s  of  c o m p l e t e  s t a b i l i z a -  
t ion .  The r e s u l t s  in  [2] w e r e  o b t a i n e d  by the a s y m p t o t i c  me thod ,  and they  m a y  be u n r e l i a b l e  a t  l e a s t  wi th in  
the M ~ 2 r a n g e  of  Mach n u m b e r s  (see  [1]). I t  is  n e c e s s a r y  to r e f i n e  the r e s u l t s  of [2], t h e r e f o r e ,  th i s  
wi l l  be done h e r e  by  the c a l c u l a t i o n  me thod  g i v e n  in  [1]. The v i s c o s i t y  c o e f f i c i e n t  i s  a s s u m e d  p r o p o r t i o n a l  
to the t e m p e r a t u r e  (~ = T),  the P r a n d t l  n u m b e r  cr = 0.75,  and the a d i a b a t i c  c o n s t a n t  ~ = 1.4.  The r e s u l t s  of  
ca lcu la t ions  for  var ious  values  of the Mach number  M a re  shown in Fig.  1: sur face  t e m p e r a t u r e s  T w at  
which comple te  s t ab i l i za t i on  occur s  along the f i r s t  neut ra l  curve (1), and along the second neutra l  curve (2) 
(the ex i s tence  of two neut ra l  curves  co r r e spond ing  to in tens ive  cooling of the su r face  has been demon-  
s t r a t e d  in [t]).  Fo r  compar i son ,  the r e su l t s  obtained in [2] by the asympto t ic  method are  shown he re  with 
a dashed  l ine.  The compar i son  ind ica tes  a wide d i s c r e p a n c y  between the r e s u l t s  based  on the numer i ca l  
method and those based  on the a sympto t i c  method.  

The numer i ca l  method has y ie lded  one reg ion  of comple te  s t ab i l i za t ion ,  which is  bounded by curve 1 
for M < 3.2 and by curve  2 for  M > 3.2. The a sympto t i c  method [2] has y ie lded  two such reg ions .  The f i r s t  
one is bounded by a curve (dashed line) cons is t ing  of two b ranches  which have been labeled I and II in Fig.  
1. Branch I coincides  with curve 1 for  M _< 1.4. The second reg ion  is bounded by curve HI. In o r d e r  to 
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TABLE 1 

I 
[ Branch I Branch II Branch III 

M 

I T w T w E C T ' w / T  w T w s ~ T ' w / T  w 

t . t  0.586 
i.25 0.798 
1.43 0.929 
i.67 t.03t 
t .8  1.055 

I 
[ ~ T ' w / T  w 

0.017 0.009 
0.050 0.011 
0.097 0.0t4 
0.170 0.02i 
0.220 0.030 

0.22 
0.394 
0.554 
0. 742 
0.872 

I 
0.033[ 0.20 
0.094] 0.i6 
0.i8 [ 0.i4 
0.25 [ o.to 
0.28 [ 0.08 

0.i66 0.0321 0.37 
0.304 0.09i 0.29 
0.427 0.i7 0.26 
0.552 0.24 [ 0.22 
0.62 0.29 1 0.2t 

�9 r ..2 
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Fig.  1 

u n d e r s t a n d  the causes  of such a d i s c r e p a n c y ,  we wil l  thoroughly  

ana lyze  the f ea s ib i l i t y  of so lv ing  the p r o b l e m  of comple te  s t ab i -  
l i z a t i on  by the a sympto t i e  method.  

2. The fol lowing s y s t e m  of equa t ions  has been  de r i ved  in  
[3] for  the p e r t u r b a t i o n  a m p l i t u d e s :  

i (U  - -  c) U'  i P  ~t . (2.1) 

(u -- c) P' +- ~ c,%" (2.2) 
T a~c~ 7M 2 ~R 

T t 
i ( U - - c ) r T - - - : K T + i  / ?cp' = 0 (2.3) 

i (U -- c) T' r 7~t O" (2.4) 

P = rT -F- 0 / T (2.5) 

H e r e ,  U and T a re  the t i m e - a v e r a g e  ve loc i ty  and t e m p e r a t u r e ,  r e s p e c t i v e l y ,  f ,  a ~ ,  r ,  and P a re  p e r -  
t u rba t i ons  of the long i tud ina l  and the t r a n s v e r s e  ve loc i ty ,  of the t e m p e r a t u r e ,  of the dens i ty ,  and of the p r e s -  
s u r e ;  7 is  the ad iaba t ic  cons tan t ,  M is  the Mach n u m b e r ,  p is  the ve loc i ty  coef f ic ien t ,  R is  the Reynolds  
n u m b e r ,  a is  the wave n u m b e r  of a p e r t u r b a t i o n ,  and  c = c r + ic i is the phase ve loc i ty  of a p e r t u r b a t i o n .  In 
de r iv ing  s y s t e m  {2.1)-(2.5) i t  has b e e n  a s s u m e d  that  a p e r t u r b a t i o n  is  an -exponen t i a l  funct ion of the long i -  
tud ina l  coord ina te  x and o.f t ime  t: exp i c e ( x - c 0 .  

Le t  the so lu t ion  of this  s y s t e m  sa t i s fy  the following three  b o u n d a r y  condi t ions  at  the s u r f a c e :  

/,,, = % = 0,, = 0 (2.6) 

If the product aR is sufficiently large, then, the fundamental system of solutions can be made up of 
the solution to the inviscid equations {~, F, | and two linearly independent viscous solutions {~3, f3, 03} 
and { ~5, fs, 05} [4]. Condition (2.6) will then yield the following relation at the surface [4] : 

Fn, [ :3,,- " 

r u-u,: --~(7--I)112:! 7 

%~, _[r('~ _ 1).~:o"- % 7 % .  /~,,, I 1, 
.... T I" 

T: ,(%.. "'"' % " t -  
( : - - - 5 : r ' - :  j \ %  ~ ::3~, - % .~,, I (2.7) 

The lef t -hand side of Eq. (2.7) is  u sua l ly  w r i t t e n  as [5] 

cp,, ic u @ i t , - -  t 

F .  U ' e--~ iv 
(2 .s) 

Dur ing  comple te  s t ab i l i z a t i on ,  ~ = 0 and  c = 1 - M  -1, and in  o r d e r  to d e t e r m i n e  the c r i t i c a l  su r f ace  
t e m p e r a t u r e  in  (2.8), one needs only the value of v(Tw) [5] which s a t i s f i e s  the equa l i ty  

�9 

v(T~.) = -- n T. ~ ~- a=r 
(2.9) 

with in  su f f i c ien t  a c c u r a c y .  
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o.,5 

rm(~) - -  I mz[I~lal] �9 0,2 .. 

i' ~-~ - - 7'.! l ~(r~) ! / 
i 

i , ~  #.J5 

_ . . . . . .  _ 

8 ~ u./<f o.r o.5# ~, 

The r i g h t - h a n d  s ide  of  Eq. (2.7) depends  only on the v i s c o u s  
s o l u t i o n s .  If ~R >> 1, and the fo l lowing e s t i m a t e s  a r e  c o r r e c t  n e a r  
the s u r f a c e  

d I U - - c ~ i ,  ] ~ 1  (2.10) T,  T ' ,  U ,  U '  ~ 1, dy e ' 

~/, o~/, P~/ @=(~n)-'/9 

then ,  fo r  the p r i n c i p a l  t e r m s  of  the v i s c o u s  a s y m p t o t i c  s o l u t i o n s ,  
we can  w r i t e  the fo l lowing  s y s t e m  of  equa t ions  [3] : 

U - - c . ,  (2.11) 
1"' - -  i a R  - - y ~  l = 0 

~ '  + i / : -  i ( u  - -  c) 0 (2.12) 
T 

U - - c  
O" - -  J a R  ~ 0 = 0 (2.13) 

F ig .  2 With the v i s c o u s  s o l u t i o n s  ou t s i de  the b o u n d a r y  l a y e r  in  the 
f o r m  {r f3 ,  0} and {~Ps, O, 05} [4], s y s t e m  (2.11)-(2.13) y i e l d s  

03 ~ / 5  -~ 0 (2.14) 

and expression (2.7) becomes 

~ +3,, . 2 %.,1{ [ r '  l}  
F ={T3~, + ( z - l ) ~ v s  c ~ f  t - - i ( ~ ( - - t )  M~c +5''~ g'"' " -~ (2.15) 

w 5,v " O~w c (T - -  t )  M:u 

In the g iven  c a s e ,  i . e . ,  when  ~ R  >> 1 and  cond i t ion  (2.10) i s  s a t i s f i e d ,  the so lu t i ons  to s y s t e m  (2.11)- 
(2.13) c a n  be found a n a l y t i c a l l y .  I n s e r t i n g  t h e s e  s o l u t i o n s  into (2.15) and then,  (2.15) into (2.8), we can  o b -  
t a i n  the r e l a t i o n  which  has  b e e n  used  in [2] fo r  c a l c u l a t i n g  the e i g e n v a l u e s .  

In the M ~ 2 r a n g e  ~R < 10, and the r e s u l t s  ob t a ined  by  the a s y m p t o t i c  method  b e c o m e  u n c e r t a i n ,  b e -  
c a u s e  the cond i t i on  (~R >> 1 h a s  b e e n  v i o l a t e d .  Th i s  cou ld  e x p l a i n  the d i s c r e p a n c y  b e t w e e n  the r e s u l t s  o b -  
t a i n e d  by  a p p l y i n g  the n u m e r i c a l  and the a s y m p t o t i c  me thod ,  r e s p e c t i v e l y ,  to the p r o b l e m  of  c o m p l e t e  s t a b i -  
l i z a t i o n  in  th is  r a n g e  of Mach n u m b e r s .  

At  Mach n u m b e r s  c l o s e  to uni ty  the i n e q u a l i t y  ~R >> 1 is  s a t i s f i e d ,  bu t  the s u r f a c e  t e m p e r a t u r e  b e -  
c o m e s  low and the cond i t i on  T ~ 1 in (2.10) i s  not s a t i s f i e d ,  which  can  l e a d  to e r r o n e o u s  r e s u l t s  in  the 
a s y m p t o t i c  m e t h o d  of so lu t i on .  F o r  b r a n c h  I in F ig .  1, h o w e v e r ,  the a g r e e m e n t  b e t w e e n  n u m e r i c a l  and  
a s y m p t o t i c  r e s u l t s  i s  v e r y  c l o s e .  No s o l u t i o n  c o r r e s p o n d i n g  to b r a n c h e s  II and III h a s  b e e n  found by  the 
n u m e r i c a l  me thod .  

In o r d e r  to u n d e r s t a n d  the c a u s e s  of th i s  d i s c r e p a n c y ,  l e t  us c o n s i d e r ,  for  e x a m p l e ,  the d e r i v a t i o n  of  
Eq.  (2.12). I t  has  b e e n  d e r i v e d  f r o m  Eq.  (2.3) unde r  the a s s u m p t i o n  tha t  ~ T y T  is  much  s m a l l e r  than  uni ty .  
We wi l l  now r e t a i n  the e s t i m a t e  e fo r  ~ ,  and wi l l  a s s u m e  tha t  T ~ T w, w h e r e u p o n ,  we wi l l  e s t i m a t e  e T w '  / 
T w on the b a s i s  of  the r e s u l t s  in [2]. The quan t i t y  T w ' / T  w wi l l  be d e t e r m i n e d  a c c o r d i n g  to (2.9) in  [2]: 

Tw" c 0 .4  (~; - -  l )  M"-c - -  0 .9  ( T z  - -  i )  c 

T w U  w' T w 

Since i t  has  b e e n  a s s u m e d  tha t  p = T,  then ,  for  a b o u n d a r y  l a y e r  a t  a f i a t  p la te  U w' = 0 . 3 3 2 / T  w. The 
r e s u l t s  of the e s t i m a t e s  a r e  g iven  in  T a b l e  1. One can  s e e  h e r e  tha t  the t e r m  q~T' /T may  be o m i t t e d  for  
b r a n c h  I. F o r  b r a n c h e s  II and III i t  i s  doubtful  w h e t h e r  th i s  t e r m  m a y  be o m i t t e d  f r o m  Eq.  (2.3).* F o r  
b r a n c h  I, f u r t h e r m o r e ,  both  a and o T ' / T  d e c r e a s e ,  i . e . ,  the a c c u r a c y  of the a p p r o x i m a t e  c a l c u l a t i o n  in -  
c r e a s e s  as  M d e c r e a s e s .  F o r  b r a n c h e s  II and III, ( p T ' / T  i n c r e a s e s  as  r d e c r e a s e s ,  and this  y i e l d s  u n r e -  
l i a b l e  r e s u l t s  in the a s y m p t o t i c  me thod  of  so lu t ion .  

*Analogous omissions have been made in deriving Eqs. (2.11) and (2.13), but they are not so obvious. 
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Fig. 3 

Since ~T ' /T is not small for branches II and III, system 
(2.11)-(2.13) incorrectly describes the behavior of viscoussolutions. 
Temperature perturbations affect one another, as can be seen 
from (2.1)-(2.5), and thus, condition (2.14), i.e., Eq. (2.15) used in 
[2], should not be satisfied. 

Thus, it is erroneous in [2], first of all, that the viscous so-  
lutions were derived using system (2.11)-(2.13), which incorrectly 
describes the behavior of such solutions, when CT'/T is not small 
(branches II and Ill). Secondly, the error associated with the incor- 
rect use of system (2.11)-(2.13) could increase considerably at low 
values of T w because of the approximate integration of the equa- 
tions in this system. In order to verify these statements, we have 
performed additional calculations. 

3. It follows from (2.8) that 

(31, u+iv - - l .=  ~ F~ 1 rJ*~ . ~A(z) 

where ~ w / F  w is determined according to (2.7). The right-hand side of equality (3.1) depends only on the 
viscous solutions, which can be found by di rec t  numerical  integration. 

In the f i rs t  se r ies  of calculations (with M = 1.2), we integrated numerical ly  Eqs. (2.11)-(2.13). The 
imaginary part  of the found solutions [Ira (A)] was plotted as a function of z: 

0 

with Yc denoting the distance f rom point U = c along the normal to the surface.  The magnitude of max [Im 
(A)] depends on the surface tempera ture .  The intersect ions of curves v(T w) and [Ira (A)] yield the tempera-  
tures of complete stabil ization (Fig. 2). Such a procedure for determining the tempera tures  of complete 
stabilization was also adopted in [2], but with the difference that the viscous solutions were sought analyt- 
ically. The dashed line in Fig. 2 represents  the resul ts  according to the asymptotic  formulas  [2]. 

It is evident that the qualitative pattern here is the same as in [2]. The max [Ira (A)] line in tersects  
the v(T w) line, which indicates that there exist  two regions of complete stabilization. The quantitative dis- 
crepancy becomes g rea te r  as T w dec reases .  This d iscrepancy indicates that, as T w decreases ,  the exact  
solutions to sys tem (2.11)-(2.13) are  less closely approximated by its analytical solutions. 

In the second ser ies  of calculations,  in o rder  to obtain the viscous solutions, we integrated all equa- 
tions of sys tem (2.1)-(2.5). The resul ts  are given in Fig. 3. It can be seen here ,  that the max [Im (A)] line 
in tersec ts  the v(Tw) line only once. 

On the basis  of these calculations,  we can conclude that at low values of T w, one must  not use sys tem 
(2.11)-(2.13) for obtaining the viscous solutions, and that the asse r t ion  in [2] concerning the existence of two 
regions of complete stabilization is e r roneous .  

The authors thank V. Ya. Levchenko for his continued in teres t  in this study, and A. S. Dryzhova for 
her  valuable comments .  
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